skip to main content


Search for: All records

Creators/Authors contains: "Mueller, Rebecca C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Research focused on microbial populations of thermoalkaline springs has been driven in a large part by the lure of discovering functional enzymes with industrial applications in high-pH and high temperature environments. While several studies have focused on understanding the fundamental ecology of these springs, the small molecule profiles of thermoalkaline springs have largely been overlooked. To better understand how geochemistry, small molecule composition, and microbial communities are connected, we conducted a three-year study of the Five Sisters (FS) springs that included high-resolution geochemical measurements, 16S rRNA sequencing of the bacterial and archaeal community, and mass spectrometry-based metabolite and extracellular small molecule characterization. Integration of the four datasets facilitated a comprehensive analysis of the interwoven thermoalkaline spring system. Over the course of the study, the microbial population responded to changing environmental conditions, with archaeal populations decreasing in both relative abundance and diversity compared to bacterial populations. Decreases in the relative abundance of Archaea were associated with environmental changes that included decreased availability of specific nitrogen- and sulfur-containing extracellular small molecules and fluctuations in metabolic pathways associated with nitrogen cycling. This multi-factorial analysis demonstrates that the microbial community composition is more closely correlated with pools of extracellular small molecules than with the geochemistry of the thermal springs. This is a novel finding and suggests that a previously overlooked component of thermal springs may have a significant impact on microbial community composition.

     
    more » « less
  2. Abstract

    The need for sustainable agricultural practices to meet the food, feed, and fuel demands of a growing global population while reducing detrimental environmental impacts has driven research in multi‐faceted approaches to agricultural sustainability. Perennial cropping systems and microbial biofertilizer supplements are two emerging strategies to increase agricultural sustainability that are studied in tandem for the first time in this study. During the establishment phase of a perennial switchgrass stand in SW Montana, USA, we supplemented synthetic fertilization with a nitrogen‐fixing cyanobacterial biofertilizer (CBF) and were able to maintain aboveground crop productivity in comparison to a synthetic only (urea) fertilizer treatment. Soil chemical analysis conducted at the end of the growing season revealed that late‐season nitrogen availability in CBF‐supplemented field plots increased relative to urea‐only plots. High‐throughput sequencing of bacterial/archaeal and fungal communities suggested fine‐scale responses of the microbial community and sensitivity to fertilization among arbuscular mycorrhizal fungi, Planctomycetes, Proteobacteria, and Actinobacteria. Given their critical role in plant productivity and soil nutrient cycling, soil microbiome monitoring is vital to understand the impacts of implementation of alternative agricultural practices on soil health.

     
    more » « less
  3. The Food and Drug Administration recommends against washing raw chicken due to the risk of transferring dangerous food-borne pathogens through splashed drops of water. Many cooks continue to wash raw chicken despite this warning, however, and there is a lack of scientific research assessing the extent of microbial transmission in splashed droplets. Here, we use large agar plates to confirm that bacteria can be transferred from the surface of raw chicken through splashing. We also identify and create a phylogenetic tree of the bacteria present on the chicken and the bacteria transferred during splashing. While no food-borne pathogens were identified, we note that organisms in the same genera as pathogens were transferred from the chicken surface through these droplets. Additionally, we show that faucet height, flow type, and surface stiffness play a role in splash height and distance. Using high-speed imaging to explore splashing causes, we find that increasing faucet height leads to a flow instability that can increase splashing. Furthermore, splashing from soft materials such as chicken can create a divot in the surface, leading to splashing under flow conditions that would not splash on a curved, hard surface. Thus, we conclude that washing raw chicken does risk pathogen transfer and cross-contamination through droplet ejection, and that changing washing conditions can increase or decrease the risk of splashing.

     
    more » « less
  4. Summary

    Successive droughts have resulted in extensive tree mortality in the southwestern United States. Recovery of these areas is dependent on the survival and recruitment of young trees. For trees that rely on ectomycorrhizal fungi (EMF) for survival and growth, changes in soil fungal communities following tree mortality could negatively affect seedling establishment.

    We used tree‐focused and stand‐scale measurements to examine the impact of pinyon pine mortality on the performance of surviving juvenile trees and the potential for mutualism limitation of seedling establishment via alteredEMFcommunities.

    Mature pinyon mortality did not affect the survival of juvenile pinyons, but increased their growth. At both tree and stand scales, high pinyon mortality had no effect on the abundance ofEMFinocula, but led to alteredEMFcommunity composition including increased abundance ofGeoporaand reduced abundance ofTuber. Seedling biomass was strongly positively associated withTuberabundance, suggesting that reductions in this genus with pinyon mortality could have negative consequences for establishing seedlings.

    These findings suggest that whereas mature pinyon mortality led to competitive release for established juvenile pinyons, changes inEMFcommunity composition with mortality could limit successful seedling establishment and growth in high‐mortality sites.

     
    more » « less